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Abstract. We consider a nonstandard odd reduction of supermatrices (as compared with the standard 
even reduction) which arises in connection with the possible extension of manifold structure group 
reductions. The study was initiated by consideration of generalized noninvertible superconformal- 
like transformations. The features of even- and odd-reduced supermatrices are investigated together. 
They can be unified into some kind of 'sandwich' semigroups. We also define a special module over 
even- and odd-reduced supermatrix sets, and the generalized Cayley-Hamilton theorem is proved 
for them. It is shown that the odd-reduced supermatrices represent semigroup bands and Rees matrix 
semigroups over a unit group. 
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I. Introduction 

According to the general theory of  G-structures [ 1 ], various geometries are obtained 
by the reduction of  a structure group of  a manifold to some subgroup G of  tangent 
space endomorphisms. In the local approach using a coordinate description, this 
means that one should reduce a corresponding matrix in a given representation to 
a reduced form as a matter of  fact. In most cases, this form is triangular, and one of  
the reasons for this is the transparent observation from ordinary matrix theory that 
triangular matrices preserve the shape and form of  a subgroup. In supersymmetric 
theories, despite the appearance of  odd subspaces and anticommuting variables, 
the choice of  the reduction shape remains the same [2], and one ground for this 
is the full identity of  the supermatrix multiplication with the ordinary one and, 
consequently, it can be naively assumed that the shape of  the matrices that form a 
substructure should be the same. In an exacting search of  nontrivial supersymmetric 
manifestations, one can observe that the closure of  multiplication can be also 
achieved for other shapes, due to the existence of zero divisors in the Grassmann 
algebra or in the ring over which a theory is defined. So the meaning of  the reduction 
itself can be extended in principle. 
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This Letter was initiated by the study of superconformal symmetry semigroup 
extensions [3-5]. Indeed, superconformal transformations [6] appear as a result 
of the reduction of a structure group matrix to a triangular form [7]. Also, the 
transition functions on semirigid surfaces [8] which are used to describe topological 
supergravity, have the same origin. In [3], we considered an alternative version of 
the reduction. The superconformal-like transformations obtained in this way have 
many unusual features, e.g. they are noninvertible and twist parity of the tangent 
space in the supersymmetric basis. We note that this situation substantially differs 
from the case of Q-manifolds [9], where changing the parity of the tangent space 
is done by hand from the first definitions. 

Here, we study an alternative reduction of supermatrices from a more abstract 
viewpoint without connecting it to a special physical model. 

2. Preliminaries 

A (plq)-dimensional linear model superspace A plq over A (in the sense of [10]) is 

the even sector of the direct product A plq -- A~ x A~, where A is a commutative 
Banach Z2-graded superalgebra [11,12] over a field IK (where IK = ~ ,  C or Qp) 
with a decomposition into the direct sum: A = A0 • A1. The elements a from 
A0 and A1 are homogeneous and have the fixed even and odd parity defined as 
lal ----def {i E f0,  1} ---- Z2[ a E Ai}. The even homomorphism rob: A ~ ~, where 

is a purely even algebra over K, is called a body map [10]. If there exists 
an embedding n: ~ '--+ A such that mb o n = id, then A admits the body and 
soul decomposition A = ~ | S, and a soul map can be defined as m, :A --+ ~. 
Usually, the isomorphism ~ --- IK is implied (which is not generally necessary 
and can lead to nontrivial behavior of the body). In case where A is a Banach 
algebra (with a norm I1"11) soul elements are quasinilputent [13], which means 

Va E S,lirrh~o~ Ilall 1/n = o. But quasinilpotency of the soul elements does 
not necessarily lead to their nilpotency (Va E ~ 3n, a n = 0) for the infinite- 
dimensional case [14]. These facts allow us to consider noninvertible morphisms 
on a par with invertible ones (in some sense), which gives, in proper conditions, 
many interesting and nontrivial results (see [3,15]). 

The even morphisms Hom0(A pig, A rain) between superlinear spaces A pig --+ 
A "~ln are described by means of (ra + n) x (p + q)-supermatrices (see [11]). In 
the theory of super-Riemann surfaces [6], the (1 + 1) • (1 + 1)-supermatrices 
describing holomorphic morphisms of the tangent bundle have a triangle shape 
[7]. Here we consider a special alternative reduction of supermatrices. For 
transparency and clarity, we confine ourselves to (1 + 1) • (1 + 1)-supermatrices, 
which will allow us to clarify ideas without hiding them behind large formulas. 
We also omit some evident proofs. The generalization to the (m + n) • (p + q) 
case is straightforward and can be mostly done by means of simple notation 
changing. 
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3. Structure of MatA (111) 

In the standard basis, the elements from Hom0(A 111, A 111) are described by the 
(1 + 1) • (1 + 1)-supermatrices [11] 

M = b E MatA (1]1), 

where a, b E A0, a, fl E A1 (in the following, we use Latin letters for elements 
from A0 and Greek letters for ones from Al, and we suppose that odd elements are 
of second nilpotency degree). For sets of supermatrices, we also use corresponding 
bold symbols, e.g. M =aef {M E MatA (111)}. In this simple (1[1) case, the 
Berezinian [11] defined as Ber : MatA (1[1) \ {M[ mb (b) = 0} ~ A0 is 

a fla 
BerM = ~ + b- T. (1) 

Now we define two types of possible reductions of M together and study some 
of their properties simultaneously. 

DEFINITION 1. Even-reduced supermatrices are elements from MatA (111) hav- 
ing the form 

(o o) 
S=-- 0 b e (111). (2) 

Odd-reduced supermatrices are elements from MatA (111) having the form 

T =  ( ~  b ) E  RMatXdd (111)" (3) 

The explanation for the basis of the notations comes from the nilpotency of 
BerT and from the fact that the even-reduced supermatrices S give supercon- 
formal transformations which describe morphisms of the tangent bundle over 
the super-Riemann surfaces [7], while the odd-reduced supermatrices T give the 
superconformal-like transformations twisting the parity of the (1]1) tangent super- 
space in the standard basis (see [3, 5]). 

ASSERTION 2. M is a direct sum of diagonal D and anti-diagonal (secondary 
diagonal) A supermatrices (the even and odd ones in the notations of[11]) 

M = D | A, (4) 

where 

(aO) 
D -  Ob E D --- MatA Diag (l l l)  , 
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(00~ ) kffo,Adiag (111) 
A -  / 3 0  c A -  . . . . .  A 

and D C S and A C T. 

For the reduced supermatrices, one finds 

b ?6 O. (5) 

Nevertheless, the following observation explains the fundamental and dual roles 
of the even-reduced supermatrices S and the odd-reduced ones T. 

THEOREM 3 (Berezinian addition theorem). The Berezinians of even- and odd- 
reduced supermatrices are additive components of the Berezinian of the corre- 
sponding nonreduced supermatrix 

Ber M = Ber S + Ber T. (6) 

The first term in (6) covers all subgroups of the even-reduced supermatrices from 
MatA (111), and only later was it considered in applications. But the second term is 
dual to the first in some sense and corresponds to all subsemigroups of odd-reduced 
supermatrices from MatA (111) (the relation (6) is a supersymmetric version of the 
obvious equality det M = det D + det A, where D and A from (4) are here ordinary 
matrices, but the problem is that for A being a supermatrix, Ber A is not defined at 
all). 

Denote a set of invertible elements of M by M*, and I = M \ M*. In [11], 
it was proved that M* = {M C MI mb (a) # 0/x mb (b) # 0}. Then, similarly, 
S* = {S E S I mb (a) # 0 Amb (b) # 0} and T* = 0, i.e. the odd-reduced matrices 
are noninvertible and T C I. Consider the invertibility structure of MatA (1]1) in 
more detail. Let us denote 

M'  = {M r M Imb(a) # 0},  

I ' =  {M E MImb(a)  = 0},  

Then 

M = M / U I I = M "  O I II 

M 'l = { M  E M I tab (b) 76 0 } ,  

I I ' =  {M C MI nab (b) = 0}.  
(7) 

and M' N I' = O,M" N I I I=O,  

therefore M* = M I N M" and T C M". The Berezinian Ber M is well-defined 
for the supermatrices from M" only and is invertible when M E M*, but for the 
supermatrices from M', the inverse (BerM) - l  is well-defined and is invertible 
when M E M* too [11]. 

Under the ordinary supermatrix multiplication, the set M is a semigroup of all 
( l l l )  supermatrices [16], and the set M* is a subgroup of M. In the standard basis, 
M* represents the general linear group GLA ( l l l )  [11]. A subset I s M is an ideal 
of the semigroup M [17]. 
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PROPOSITION 4. (1) The sets I, I ~ and 11 are isolated ideals o f  M. 
(2) The sets M*, M I and M"  are filters o f  the semigroup M. 
(3) The sets M I and M"  are subsemigroups o f  M, which are M ~ = M* U jt and 

M" = M* U J" with the isolated ideals 

J ' = M  I \ M *  = M I N I  II and J " = M " \ M * = M " f q l  I 

respectively (cf. [11], pp. 95, 103). 
(4) The ideal o f  the semigroup M is I = 11 U J~ = I II U J". 
Proof  Let M3 = M1 M2, then a3 = a la2 + ~1/32 and b 3 -- b lb2 +/31 ~2. Taking 

the body part, we derive mb (a3) =mb (al) mb (a2) ,  and mb (b3) = m b  (hi) mb (b2). 
Then use the definitions. [] 

4. Multiplication Properties of Odd-Reduced Supermatrices 

The odd-reduced supermatrices do not form a semigroup in the general case, since 

TIT2= (~i/~2 ~xlb2 ) 
bl/32 blb2 -~-/31o~2 r Z. 

However, it follows 

T . T O T # 0 ~ a / 3 = 0 ,  T . T N S #  0 ~ / 3 b = 0 ,  (8) 

that can take place, because of the existence of zero divisors in A. In (8), the 
point denotes the standard supermatrix set multiplication: 

A . B ~ f { U A B I A  C A , B  E B}. 

PROPOSITION 5. (1) The subset T sG C T of  the odd-reduced supermatrices 
satisfying a/3 = O form an odd-reduced subsemigroup of  M. 

(2) In the odd-reduced semigroup T sG, the subset o f  supermatrices with/3 = 0 
is a left ideal, and one with ~ = 0 is a right Meal, the matrices with b = O form a 
two-sided ideal. 

Let 

Z~ (t) = ( 0 l t  ) E Z~ C (9) 

i.e. Z~ is a set of odd-reduced supermatrices parametrized by the even parameter 
t E A0. Then Z~ is a semigroup under the matrix multiplication (a E A1 'num- 
bers' the semigroups) which is isomorphic to a one-parameter semigroup with the 
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multiplication {tl} *~ {t2} = { t l} .  This semigroup is called a right zero semi- 
group ZR = {[.J {t} ; *a} and plays an important role (together with the left zero 
semigroup ZL defined in a dual manner) in the general semigroup theory (e.g., see 
[17], Theorem 1.27, and [18]). 

Let 

B ~ ( t , u ) = ( O  a t )  TsG, a u  1 E Bc~ C (10) 

then Be, is a supermatrix semigroup (numbered by a) which is isomorphic to a 
two A0-parametric semigroup B = {[.J {t, u } ; . ~ } ,  where the multiplication is 
{tl, Ul} *c~ {t2, U2} ---- {tl,  u2}. Here every element is an idempotent (as in the 
previous case too), and so this is a rectangular band multiplication [18]. 

ASSERTION 6. The one and two parametric subsemigroups of the semigroup of 
odd-reduced supermatrices T sG having vanishing Berezinian represent semigroup 
bands, viz. the left and right zero semigroups and rectangular bands. 

THEOREM 7. The continuous supermatrix representation of  the Rees matrix semi- 
group over a unit group G = e (see [17,18]) is given by formulas (9) and (10). 

5. Unification of  Reduced Supermatrices 

Now we try to unify the even- and odd-reduced supermatrices (2) and (3) into 
a common abstract object. To begin with, consider the multiplication table of all 
introduced sets 

D . D = D ,  A . A = D ,  

D-  S = S, T .  A = S st, 

S . D  = S, S . A  = T n, 

A . T = S ,  S . T  = St.JT, 

A . S = T ,  T . S = T .  

st :  MatA (111) --+ MatA ( l l l )  is a supertranspose [12], i.e. ( )st( )  a (~ a 

/~b  - a b  

Here 

Also, 

(11) 

we use the H-transpose [19] defined by II: MatA (111) ~ MatA ( l l l )  and 

H 

fl a a  
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Note that the sets of supermatrices S and T are not closed under st and II operations, 
but S st n S = D a n d T  rIN T = A. 

We observe from the first two relations of (11) that A plays a role of the left 
type-changing operator A : S --+ T and A : T -+ S, while D does not change the 
type. Next, from the first two relations of (11), it is obviously seen that the sets S 
and D are subsemigroups. Unfortunately, due to the next to last relation of (11), 
the set T has no such clear abstract meaning. However, the last relation T-  S = T 
is important from another viewpoint: 

THEOREM 8. Any odd-reduced morphism A 111 --~ A ill corresponding to T can 
be represented as a product of odd- and even-reduced morphisms, such that 

S 

(12) 

is a commutative diagram. 

This decomposition is crucial in applications to the superconformal-like trans- 
formation constructions (see [3]). 

5.1. REDUCED MATRIX SET SEMIGROUP 

To unify the introduced sets (11), we consider the triple products 

S - A . T = S ,  T . A . T = T ,  

S . D . S = S ,  T . D . S = T .  
(13) 

Here we observe that the supermatrices A and D play the role of 'sandwich' 
elements in a special S and T multiplication. Moreover, the sandwich elements are 
in one-to-one correspondence with the right sets on which they act, and so they are 
'sensible from the right'. Therefore, it is quite natural to introduce the following 

DEFINITION 9. A sandwich product of the reduced supermatrix sets R = S, T is 

def ~ R1 �9 D.  R2, R2 = S, 
Rl @ R2 (14) 

L R1 �9 A .  R2, R2 = T .  

In terms of the sandwich product from (13), we obtain 

S |  T Q T = T ,  

S |  S = S,, T | S = T. (15) 

PROPOSITION 10. The (})-multiplication is associative. 
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DEFINITION 11. The elements S and T form a semigroup under G-multiplication 
(14), which we call a reduced matrix set semigroup and denote "]'~.A4Sse t. 

Comparing (15) with the multiplication of the one-parametric odd-reduced 
supermatrices (9), we observe 

THEOREM 12. The reduced matrix set semigroup is isomorphic to a special right 
zero semigroup, i.e. 7~..,h/lSse t ~ Z R : {R = S, T; | 

5.2. SCALARS, ANTI-SCALARS, GENERALIZED MODULES AND 
REDUCED MATRIX SANDWICH SEMIGROUP 

Now we introduce an analogue of G-multiplication for the reduced matrices per 
se (not for sets). First we define the structure of a generalized A-module in 
Hom0(A 111, A 111) in some alternative way, the even part of which is described 
in [12] (in ordinary matrix theory, it is a trivial fact that a product of a matrix and a 
number is equal to a product of a matrix and a diagonal matrix having this number 
on the diagonal). 

DEFINITION 13. In Math (111) a scalar (matrix) E (x) and anti-scalar (matrix) 
E (X) are defined by 

= E D = M a t  ,ag ( 1 [ 1 ) ,  
0 

E(x) de=f(O X )  EA=MatAdiag(1,1) 
x O  

x E A o ,  

x E A 1 .  

(16) 

ASSERTION 14. The Berezin queer subalgebra 

(xx) QA (1) - C Math ( l l l )  
X x  

[ 11 ] is a direct sum of the scalar and anti-scalar 

QA (1) = E (z) | g (X). (17) 

ASSERTION 15. The anti-scalars anticommute s (XI) ~ (X2) -~- ~ (X2) ~ (XI) = 0, 
and so they are nilpotent. 

PROPOSITION 16. The structure of  the generalized A0 @ M-module in Homox 
(A II1 , A 111) is defined by the action of the scalars and anti-scalars (16). 
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This means that everywhere we exchange the multiplication of supermatrices by 
even and odd elements from A with the multiplication by the scalar supermatrices 
and anti-scalar ones (16). The relations containing the scalars are well known [12], 
but we obtain new dual scalars for the anti-scalars. Consider their action on the 
elements M E MatA (111) in more detail. First we need the following definition. 

DEFINITION 17. Left 7 9 and right Q anti-transposes are Hom0(Alll,A ill) 
HOml(A ill, A 111) mappings acting on M E M as 

( ) ( ; )  a a /3 b a a ~2 a 
= , a n d  = . 

f i b  a a  3 b  b 

COROLLARY 1 8.  Anti-transposes are square roots of  the parity changing oper- 
ator H in the following sense 79Q = Q79 = II. 

ASSERTION 19. Anti-transposes satisfy 

(g (X) M)  ~' = x M ,  

(ME (X)) p = M n X ,  

(g (X) M)  Q = X MH, 

(ME (X)) ~2 = MX.  
(18) 

Thus, the concrete realization of right, left and two-sided generalized A0 | A1- 
modules in Homo(A 111, A 111) is determined by the actions 

E (X) M = x M  ~, M E  (X) = MQX, 

E (X1) ME (X2) = X 1 M r I x 2 ,  
(19) 

together with the standard A-module structure [12] 

E (x) M = xM,  M E  (x) = M x ,  

E ( x l ) M E ( z 2 )  = x lMx2 .  
(20) 

COROLLARY 20. The generalized A0 q) Al-module relations are 

(E (x) M )  N = E (x) ( M N ) ,  

M ( N E  (z)) = ( M N )  E (x) ,  

(ME (X)) N = M (8 (X) N ) ,  

where M,  N E MatA (l[1). 

( M E  (x)) N = M (E (x) N ) ,  

(8 (X) M)  N = E (X) ( M N ) ,  

M (N8  (X)) = ( M N )  E (X). 

(21) 

DEFINITION 21. The odd scalar and odd anti-scalar are defined by 

= E Homl AII1,A 111 
0 - X  

(22) 
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and 

~(x) def ( :  X) ( ) = E Homl A Ill A 111 (23) 
0 ~ 

respectively. 

PROPOSITION22.  The structure of  the generalized Ao ~ M-module in 
HOm l (A 111, A 111 ) is determined by the analogous to (21 ) actions o f  the odd scalar 
and odd anti-scalar. 

One way to unify the even- (2) and odd-reduced (3) supermatrices into an object 
analogous to a semigroup, is consideration of a sandwich multiplication similar to 
(14), but on the level of supermatrices (not sets), by means of the scalars and anti- 
scalars as sandwich supermatrices. Indeed, the ordinary supermatrix product can be 
written as M1M2 = M1E(1)M2. We cannot find an analogue to this relation for 
the anti-scalar, because among odd variables X E M,  there is no unity. Therefore, 
the only possibility to include E (X) into equal play is consideration of the sandwich 
elements (16) having arbitrary (or fixed by other special conditions) arguments x 
and X. Thus, we naturally come to the following definition. 

DEFINITION 23. A sandwich right sensible A0 @ Al-product of the reduced super- 
matrices R = S ,T  is 

R1 *x  R2 aef ~ R1E (x) R2, R2 = S, 
(24) ( R1C (X) R2, R2 = T, 

where X = {z, X} EA0 | A1. 

The *x-multiplication is associative and its table coincides with (15). Therefore, 
we have 

PROPOSITION 24. Under the Ao | Al-multiplication, the reduced matrices form 
a semigroup which we call a reduced matrix sandwich semigroup TiA~SS. 

THEOREM 25. The reduced matrix sandwich semigroup is isomorphic to a special 
right zero semigroup, i.e. ~ .A488  ~- ZR = { R = U S [.J T;*x} .  

5.3. DIRECT SUM OF REDUCED SUPERMATRICES 

Another way to unify the reduced supermatrices is to consider the connection 
between them and the generalized A0 ~ M-modules.  

DEFINITION 26. The reduced supermatrix direct space R . M D S  is a direct sum 
of the even-reduced supermatrix space and the odd-reduced one. 
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In terms of sets, we have R e = S | T. Note that R e ~ M because of (5). 

ASSERTION 27. In 7~./~r D8, the scalar is Berezin's queer subalgebra Q A (1) (see 
(17)). 

THEOREM 28. In 7L' A/ID8, the scalar plays the same role for  the even-reduced 
supermatrices as the anti-scalar plays for the odd-reduced ones. 

COROLLARY 29. The eigenvalues of  even- (2) and odd-reduced (3) super- 
matrices should be found from different equations, viz. 

s v  = E (x) V, T V  = E (X) V, (25) 

where V is a column vector, and they are 

X l  --~ a, X 2 = b, 

X 1  = 0~, X 2  = ~ "  

(see (2) and (3)). 

(26) 

DEFINITION 30. The characteristic functions for the even- and odd-reduced super- 
matrices are defined in ~.M798 by different formulas 

e v e n  -. ~ H~dd H s (x) = Ber (E (x) - S) (X) = Ber (L" (X) - T) .  (27) 

Remark. In the standard A-module over MatA ( l l l )  [11], one derives charac- 
teristic functions and eigenvalues for any supermatrix (and for odd-reduced too) 
from the first equations in (25) and (27) which gives a different result in the odd 
case (see, e.g., [20]). 

Using (2), (3), we easily find 

(x - b)(x - a) 
H~ yen (x) = 

(x - b) 2 ' 
(X)  = (X  - f l )  (X  - 

b2 (28) 

Here we observe the full symmetry between even- and odd-reduced superma- 
trices (for this purpose, the cancellation in the first equation was avoided) and 
consistency with their A0 | Al-eigenvalues (26). 

The characteristic polynomial of a supermatrix M is defined by PM (M) = 0 
and in complicated cases is constructed from the parts of the characteristic function 
HM (x) according to a special algorithm [20] (for a nonsupersymmetric matrix 
M, it evidently coincides with the characteristic function PM (x) = ItM (x) = 
det ( Ix  - M),  where I is a unity matrix). Due to the existence of zero divisors in 
A, the degree of PM (x) can be less than n = p + q, M E Math (Plq)" But this 
algorithm is not directly applicable for the odd-reduced and secondary diagonal 
supermatrices. As before, we introduce two dual characteristic polynomials and, 
using (28), obtain the Cayley-Hamilton theorem in ~ . M  D8. 
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THEOREM 31 (The generalized Cayley-Hamilton theorem). The characteristic 
polynomials in Td.A4DS are 

p~ve. (z) = (x - a) (x - b), 

(X) = (X - (X 
(29) 

and p~ven (S) = 0 for any S, but e~dd (T) = 0 for the nilpotent b only. 

6. Conclusions 

We conclude that almost all the above constructions can be easily extended to arbi- 
trary supermatrices. In the particular case of superconformal-like transformations, 
it would be interesting to use the alternative reduction introduced here in building 
the objects analogous to super Riemann or semirigid surfaces, which can also lead 
to new topological-like models. 

References 

1. Kobayashi, S.: Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972. 
2. Lott, J.: Torsion constraints in supergeometry, Comm. Math. Phys. 133 (1990), 563. 
3. Duplij, S.: On semigroup nature of superconformal symmetry, a t. Math. Phys. 32 (1991), 2959. 
4. Duplij, S.: On N = 4 super Riemann surfaces and superconformal semigroup, J. Phys. A 24 

(1991), 3167. 
5. Duplij, S.: Ideal structure of superconformal semigroups, University of Kaiserslautern, Preprint 

KL-TH-95/4, CERN-SCAN-9503193, 1995. 
6. Crane, L. and Rabin, J. M.: Super Riemann surfaces: uniformization and Teichmiiller theory, 

Comm. Math. Phys. 113 (1988), 601. 
7. Giddings, S. B. and Nelson, P.: The geometry of super Riemann surfaces, Comm. Math. Phys. 

116 (1988), 607. 
8. Govindarajan, S., Nelson, E, and Wong, E.: Semirigid geometry, Comm. Math. Phys. 147 (1992), 

253. 
9. Alexandrov, M., Kontsevich, M., Schwarz, A., and Zabrodsky, O.: The geometry of the master 

equation and topological quantum field theory, UC Davis preprint, 1995, hep-th/9502010. 
10. Rogers, A.: A global theory of supermanifolds, J. Math. Phys. 21 (1980), 1352. 
11. Berezin, E A.: Introduction to Superanalysis, D. Reidel, Dordrecht, 1987. 
12. Leites, D. A.: Introduction tothe theory of supermanifolds, Russian Math. Surveys35 (1980), 1. 
13. Ivashchuk, V. D.: Invertibility of elements in infinite-dimensional Grassmann-Banachalgebras, 

Theoret. Math. Phys. 84 (1990), 13. 
14. Pestov, V.: Soul expansion of G ~ superfunctions, J. Math. Phys. 34 (1993), 3316. 
15. Duplij, S.: Some abstract properties of semigroups appearing in superconformal theories, Uni- 

versity of Kaiserslautern, Preprint KL-TH-95/11, to appear in Semigroup Forum. 
16. McAlister, D. B.: Representations of semigroups by linear transformations, 1, 2, Semigroup 

Forum 2 (1971), 189. 
17. Clifford, A. H. and Preston, G. B.: The Algebraic Theory ofSemigroups, Vol. 1, Amer. Math. 

Soc., Providence, 1961. 
18. Howie, J. M.: An Introduction to Semigroup Theory, Academic Press, London, 1976. 
19. Manin, Y. I.: Gauge Field Theory and Complex Geometry, Springer-Verlag, New York, 1988. 
20. Urrutia, L. E and Morales, N.: The Cayley-Hamilton theorem for supermatrices, J. Phys. A 27 

(1994), 1981. 


